第三节
新一代测序与临床

一、利用新一代测序技术建立了多种疾病的分型新标准及靶向治疗
用新一代人全基因组测序,全外显子组测序结合临床信息建立了多种癌症分型新标准,并由分型靶点设计研制靶向药物。根据510例乳腺癌病人的外显子组图谱,将乳腺癌分成4个亚型:Lumina A,Lumina B,HER2-enriched和basal-like。从测序获得亚型信息,有利于医生做出明确的诊断和治疗计划。如,曲妥珠单抗(赫赛汀)靶向治疗HER2-enriched亚型乳腺癌有特效。HER2也是胃癌患者预后不良的指标之一,与单纯化疗相比,曲妥珠单抗靶向治疗结合化疗,患者生存期显著延长。
二、目标序列捕获测序用于因DNA序列变异引起的疾病的诊断和靶向治疗
人类85%左右因DNA序列变异引起的疾病是由于外显子序列的突变,因此外显子或外显子组顺序测定即可进行疾病的基因诊断。例如,肺癌患者基因突变常见于膜受体酪氨酸激酶家族之一 EGFR 基因外显子18、19、20和22突变,尤其是19外显子缺失,总突变率在54%以上。靶向药物厄洛替尼和吉非替尼治疗效果显著;但外显子20有T790M突变或有插入突变则导致耐药;若有K-ras突变的患者对上述两药无效。
ALK也是一种酪氨酸激酶受体, ALK 基因突变与血液、间质和实体三大类型肿瘤相关。在多种癌症中发现 ALK 基因外显子易位,与间变性大细胞淋巴瘤、炎性肌纤维母细胞瘤、非小细胞肺癌、结直肠癌、乳腺癌等有关。2号染色体的倒位产生 EML4-ALK 融合基因,其编码的融合蛋白形成非配体依赖性二聚体,引起组成性的ALK激活。ALK信号激活 RAS-MEK-ERK、JAK3-STAT3和PI3K-AKT信号通路,导致细胞增殖和生成;与非小细胞肺癌和肺腺癌组织学、细胞形态学、年轻患者及吸烟史均相关。
ALK抑制剂Crizotinib对 ALK 易位的肺癌患者整体反应率为57%,疾病控制率为90%。ALK二代抑制剂Alectinib对Crizotinib耐药的 ALK 易位的非小细胞肺癌患者体现良好的疗效。
三、人全基因组解密推动医学基础和临床科学的进步有待深入发展
基因组测序发现了不少疾病与基因突变有关,并由此发明了有效的靶向诊断和靶向药物,但靶向药物多数只能延长患者寿命。可能与恶性肿瘤细胞基因组在治疗过程中再发生突变有关,或恶性肿瘤细胞基因组突变原来就不止一种,即肿瘤细胞的异质性,以致靶向药物逐渐产生耐药等变化。
胰腺癌生长快,转移率高,5年生存率为7%~8%,手术切除率为10%~20%。100例胰腺癌患者全基因组测序结果显示:基因组顺序中的突变在胰腺癌发生到转移几乎同时发生,如同“大爆炸”。基因组、外显子组或转录组测序若不与临床实际相结合,很难探索到胰腺癌发生发展的基本信息和新的治疗方法。
主要参考文献
1.Weaver RF.Molecular Biology.New Yorks:Springer McGraaw-Hill,2012.
2.Mali P,Yang L,Esvelt KM,et al.RNA-guided human genome engineering via Cas9.Science,2013,339(6121):823-826.
3.Cong L,Ran FA,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems.Science,2013,339(6121):819-823.
4.Taxman DJ.siRNA design:methods and protocols.Biotechnology,2012,119(14):6-16.
5.Nussbaum R,Mcinnes RR,Willard HF.Thompson and Thompson Genetics in Medicine.7th ed.Philadephia:Sunders Elseviser,2007.
6.National Cancer Institute.Tagetedcancer therapies,reviewed,2012.
7.Rididhough G,Zahn LM.Whatt is eipigenetics.Science,2012,330(6004):611.
8.Nicolova D.RNAi-regulations and applications in oncology.J Cancer Molecular Cell,2008,4(3):66-67.
9.Shi Y.Whetstine JR.Dynamic regulation of histone lycine methylation by demethylases molecular cell.2007,25(1):1-14.
10.Cagnello M,Roux PP.Actiation and function of the MAPK and thrir substrats,the MAPK-activated protein kinases.Molecrobiol Mol Biol Rev,2011,75(1):50-83.
11.Bogoyevitch MA,Nigo RR,Zhao TT,et al.c-Jun N-terminalkinase(JNK)signaling:recent advances and challenges.Biochim Biophys Acta,2010,1804(3):463-475.
12.Takahashi-Yanaga F,Kahn M.Tageting Wnt signaling:can we safely eradicate cancer stem cells.Cancer Res,2010,16(12):3153-3162.
13.Russo GLI,Russo M,Ungaro P.AMP-activated protein kinase:a target for old drugs against diabetes and cancer.Biochem Pharmacol,2013,86(3):339-350.
14.Choi YK,Park KG.Metablic roles of AMPK and metfprm in cancer cell.Mol Cells,2013,36(4):279-287.
15.Huang L,Fu L.Mechenisms of resistance to EGFR tyrosine kinase inhibitors.Acta Pharm Sin B,20155(5):390-401.
16.Goldman L,Schafer AI.Cecil Medicine.24th ed.New Yorks:Elsevier Health Sciences,2011.
17.Illumina.An Introduction to Next-Generation Sequencing Technology.http://www.illumina.com/content/dam/illuminamarketing/documents/products/illumina_sequencing_introduction.pdf.Accessed on March 16,2016.
18.Biesecker LG,Green RC.Diagnostic Clinical Genome and Exome Sequencing.N Eng1 J Med,2014,370:2418-2425.
19.Taber KA,Dickinson BD,Wilston M.The promise and challenges of next-generation genome sequencing for clinical care.JAMA Intern Med,2014,174(2):275-280.
20.Mutz K,Heikenbrinker A,Lonne M,et al.Transcriptome analysis using next-generation sequencing.Curr Opin Biotech,2013,24:22-30.
21.Katsanis SH,Katsanis N.Molecular genetic testing and the future of clinical genomics.Nature Rev Genet,2013,14:415-426.
22.Solomon BJ,Kim DW,Wu YL,et al.First-line crizotinib versus chemotherapy in ALK-positive lung cancer.N Engl J Med 2014,371(23):2167-2177.Erratum in:N Engl J Med,2015,15:373(16):1582.
23.Notta F,Chan-Seng-Yue M,Lemire M,et al.A renewed model of pancreatic cancer evolution based on genomic rearrangment patterns.Nature,2016,538:378-382.