2.3 总结
在2.1节中,我们深入探讨了人工智能技术在教育领域的应用现状,涵盖了教学信息采集与识别、数据预处理、个性化教学、智能教育管理、学伴与助教机器人、互动课堂与虚拟课堂等多个方面。通过计算机视觉、语音处理、生物传感器等技术,实现了对学生学习行为、情绪状态、生理特征的实时采集和识别,为个性化教学提供了数据基础。数据清洗、数据集成、知识图谱等技术则对教育数据进行预处理,提高了数据质量,为后续分析提供了保障。个性化学习路径规划、智能辅导系统、自适应评估等技术实现了对学生学习情况的精准分析,并提供个性化的教学方案和资源推荐。学伴与助教机器人则为学生提供个性化学习支持,促进学生的认知学习和情感体验。互动课堂与虚拟课堂则打造了更加灵活和高效的学习环境。此外,本节还探讨了智能教育伦理相关技术支持,例如联邦学习、信息安全技术、哈希函数、数据加密等技术,保障教育数据的安全性和隐私性,并通过透明、公平、鲁棒、问责等技术,确保人工智能技术在教育领域的应用符合伦理规范。
2.2节从人工智能技术通用性维度和信息处理环节维度对智能教育领域应用的人工智能技术进行了矩阵分析,并将其分为五类:定制化应用的人工智能共性技术、自适应学习相关技术、人机协同技术、赋能教育与心理学研究的新范式技术以及“以人为本”的教育伦理相关技术。定制化应用的人工智能共性技术包括人脸识别、语音识别、知识图谱、自然语言处理等成熟商用技术,以及跨模态信息表征与分析、情感计算等前沿技术。自适应学习相关技术旨在实现以学习者为中心的个性化教学,包括个性化学习系统、智能辅助教学工具、智能辅助教师系统、虚拟实境教学环境等。人机协同技术探索人机智能共生的行为增强与脑机协同,提升教学效果和学习体验,包括面向教学过程的人机协同教育技术和虚拟教学环境技术。赋能教育与心理学研究的新范式技术则包括学习者潜发展水平的测量、最近发展区可计算模型构建、行为外显、内隐的量化、课堂学习机制研究、综合素养的智能化测评、基于脑机芯片的新型学习方式研究等,旨在探索人工智能技术如何赋能教育与心理学研究。最后,“以人为本”的教育伦理相关技术包括安全性、透明性、公平性、鲁棒性、问责制度和学生福祉等技术,旨在确保人工智能技术在教育领域的应用符合伦理规范,并真正服务于学生的学习和成长。总而言之,人工智能技术在教育领域的应用已经取得了显著的进展,为教育带来了革命性的变化。然而,随着人工智能技术的不断发展,也带来了一系列新的挑战和机遇。未来,智能教育的发展需要在技术进步的同时,更加关注教育伦理和学生的福祉,确保人工智能技术在教育领域的应用真正服务于学生的学习和成长,推动教育的公平化、个性化和智能化发展。
[1] Szeliski R.,“Computer Vision:Algorithms and Applications,” Springer Nature ,2022.
[2] Loos S.A.M.,Klapp S.H.L.,“Fokker-Planck equations for time-delayed systems via Markovian embedding,” Journal of Statistical Physics 177,no.1(2019):95-118.
[3] Rabiner L R.,“A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE 77,no.2(1989):257-286.
[4] Chen L.,Hoey J.,Nugent C.D.,et al.,“Sensor-based activity recognition,” IEEE Transactions on Systems , Man , and Cybernetics , Part C ( Applications and Reviews )42,no.6(2012):790-808.
[5] Christen P., Data Matching: Concepts and Techniques for Record Linkage , Entity Resolution , and Duplicate Detection (Berlin:Springer Science&Business Media,2012).
[6] García S.,Luengo J.,Herrera F., Data Preprocessing in Data Mining (Cham,Switzerland:Springer International Publishing,2015).
[7] Wang S.,Yu H.,Hu X.,et al.,“Participant or spectator? Comprehending the willingness of faculty to use intelligent tutoring systems in the artificial intelligence era,” British Journal of Educational Technology 51,no.5(2020):1657-1673.
[8] Anh N.B.,Son T.N.,Lam T.P.,et al.,“A Computer-Vision Based Application for Student Behavior Monitoring in Classroom,” Applied Sciences 9,no.22(2019).
[9] Bahreini K.,Nadolski R.,Westera W.,“Towards multimodal emotion recognition in e-learning environments,” Interactive Learning Environments ,(2016):590-605.
[10] Leite I.,Castellano G.,Pereira A.,et al.,“Modelling empathic behaviour in a robotic game companion for children:an ethnographic study in real-world settings,” Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction ,2012:367-374.
[11] Preeti Y,C.S.S.,“Unveiling the Cutting Edge:A Comprehensive Survey of Localization Techniques in WSN,Leveraging Optimization and Machine Learning Approaches,” Wireless Personal Communications ,(2023):2293-2362.
[12] Castera C.,Ochs P.,“From Learning to Optimize to Learning Optimization Algorithms,” arXiv preprint ,arXiv:2405.18222,2024.
[13] Zhao B.,Sun J.,Xu B.,et al.,“EDUKG:a heterogeneous sustainable k-12 educational knowledge graph,” arXiv preprint ,arXiv:2210.12228,2022.
[14] Huang X.,Zhang J.,Li D.,et al.,“Knowledge graph embedding based question answering,” Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining ,(2019):105-113.
[15] Belpaeme T.,Kennedy J.,Ramachandran A.,et al..“Social robots for education:A review,” Science Robotics 3,no.21(2018).
[16] Martinez-Martin E.,del Pobil A.P.,“Personal robot assistants for elderly care:an overview,” Personal Assistants: Emerging Computational Technologies (2018):77-91.
[17] Hung I.C.,Chao K.J.,Lee L.,et al.,“Designing a robot teaching assistant for enhancing and sustaining learning motivation,” Interactive Learning Environments 21,no.2(2013):156-171.
[18] Bhutoria A.,“Personalized education and artificial intelligence in the United States,China,and India:A systematic review using a human-in-the-loop model,” Computers and Education: Artificial Intelligence 3,(2022):100068.
[19] Hicke Y.,Agarwal A.,Ma Q.,et al.,“ChaTA:Towards an Intelligent Question-Answer Teaching Assistant using Open-Source LLMs,” arXiv preprint arXiv:2311.02775(2023).
[20] Abdelhamid S.,Katz A.,“Using chatbots as smart teaching assistants for first-year engineering students”(paper presented at the First-Year Engineering Experience ,2020).